The Challenge of Restoring the Baltic Sea: Learning From the Past to Find Solutions for the Future

Bo Gustafsson

Baltic Sea

Area = $420\ 000\ \text{km}^2$ Mean depth = $50\ \text{m}$ Max depth = $459\ \text{m}$

Relatively large shallow entrance area with two shallow sills

Permanent haline stratification

Freshwater supply = 500 km³ yr⁻¹ Residence time 33 yrs

No tides

Strong seasonality – ice in winter to up to 20 °C in summer

Baltic Sea

Watershed area = 1 730 000 km² Proportion forest = 53% Proportion cultivated = 22%

Population = 84 000 000

Coastal countries = 9 Additional in watershed = 5

People and Agriculture are focused in the South

1950s-1970s:

- Population increase (60 85 million) ٠
- Urbanisation (30 -> 60%)•
- Mechanisation of agriculture ۲
- Fertilizer consumption (at least 3 times • increase)

Increased hypoxia in open Baltic observed already late 1960s Eutrophication in lakes identified Initial WWTP construction in western countries

Fonselius, S. H. 1969. Hydrography of the Baltic deep basins III.

Fig. 23. Mean values of dissolved oxygen in ml/l below the halocline at station F 78 (Landsort Deep) from 1900 to 1967.

0.8 Winter DIP 0.7 -0.6 (µM)

1.2

1.1

1.0

0.9

0.5

TP Load (t y⁻¹

1990-2006:

TP Load Winter DI

7Collapse of the Soviet Union and Eastern Block

- All riparian countries except Russia joins EU
- Followed by strong economic development and

political stability

The political will to solve the eutrophication problem peaked

Nutrient loads started to decrease Hypoxia gradually expands Massive cyanobacteria bloom in 2005

2000

2010

Lithuania

1980

2012

1990

0.3

0.2

0.1

2020

1.2

1.1

1.0

Hypoxia worse than ever Cyanobacteria blooms worse than ever

Frustration and despair! Science-based advice is more important than ever

Model tools are available to help us understand

BALTSEM

- Coupled physical-biogeochemical model
- Forced by weather, river runoff and North Sea boundary; and nutrient loads
- Hindcast simulation 1970-2021

Background to the present state

Delayed response in the sea

Delayed response in the sea

Stockholm

University

1960 loads would have led to substantial eutrophication

Delayed response in the sea

And 1970 loads to conditions worse than observed

> Stockholm University

Have measures had an effect?

Two scenarios: one with observed loads one without reduction since mid-1980s

It would have been much worse without the effort made!

Eutrophication

"Baltic Sea unaffected by eutrophication"

Management objective

- Minimize inputs of nutrients from human activities

- Concentrations of nutrients close to natural levels
- Clear waters
- Natural level of algal blooms
- Natural distribution and occurrence of plants and animals
- Natural oxygen levels

HELCOM

Baltic Marine Environment Protection Committee

HELCOM Baltic Sea Action Plan

HELCOM Ministerial Meeting Krakow, Poland, 15 November 2007

Indicators and thresholds

Quantify objectives using measurable indicators and define thresholds of these

Method to determine Maximum Allowable Inputs

Question to be answered is:

What combination of loads to the basins satisfies both targets and provides the maximal loads? ->

optimization problem

1. Determine relationships between loads and indicator response from a large amount (1000nds) of cleverly chosen model simulations

2. Find the solution to the optimization problem from the data base of relationships

"Baltic Sea unaffected by eutrophication"

- Minimize inputs of nutrients from human activities

- Concentrations of nutrients close to natural levels
- Clear waters
- Natural level of algal blooms
- Natural distribution and occurrence of plants and animals
- Natural oxygen levels

Table 1. Maximum allowable inputs (MAI) of nitrogen (TN) and phosphorus (TP) to the Baltic Sea sub-basins (in tonnes/year)

	Maximum allowable inputs (MAI)				
Baltic Sea sub-basin	Total nitrogen (TN) tonnes/year	Total phosphorous (TP) tonnes/year			
Kattegat	74,000	1,687			
Danish Straits	65,998	1,601			
Baltic Proper	325,000	7,360			
Bothnian Sea	79,372	2,773			
Bothnian Bay	57,622	2,675			
Gulf of Riga	88,417	2,020			
Gulf of Finland	101,800	3,600			
Baltic Sea	792,209	21,716			

"Baltic Sea unaffected by eutrophication"

Ecological obiectives

- Minimize inputs of nutrients from human activities

- Concentrations of nutrients close to natural levels
- Clear waters
- Natural level of algal blooms
- Natural distribution and occurrence of plants and animals
- Natural oxygen levels

Table 2a. Net nutrient input ceilings (NIC) of nitrogen for the HELCOM countries, non-HELCOM countries in the Baltic Sea catchment area, other countries with airborne input, Baltic Sea shipping and North Sea shipping (in tonnes/year).

	Bothnian Bay	Bothnian Sea	Baltic Proper	Gulf of Finland	Gulf of Riga	Danish Straits	Kattegat
Germany	947	3,920	34,077	1,645	1,747	23,647	4,661
Denmark	280	1,148	9,025	421	462	28,067	28,538
Estonia	113	404	1,478	11,334	13,099	22	24
Finland	35,087	28,700	1,827	20,457	295	76	89
Lithuania	108	495	25,878	305	8,820	66	80
Latvia	73	330	6,457	246	43,074	31	34
Poland	668	3,125	151,997	1,407	1,596	1,480	1,443
Russia	839	1,993	10,317	61,503	3,296	238	245
Sweden	17,718	32,633	30,690	626	525	6,056	32,799
Other countries with airborne input	1,375	5,008	26,947	2,986	2,188	4,933	4,502
Belarus	-	-	13,456	-	12,820	-	-
Czech Republic	-	-	3,551	-	-	-	-
Ukraine	-	-	1,693	-	-	-	-
Baltic Sea shipping	284	1,141	5,180	675	345	651	701
North Sea shipping	131	475	2,427	196	150	729	884

Table 2b. Net nutrient input ceilings (NIC) of phosphorus for the HELCOM countries, non-HELCOM countries in the Baltic Sea catchment area (in tonnes/year).

	Bothnian Bay	Bothnian Sea	Baltic Proper	Gulf of Finland	Gulf of Riga	Danish Straits	Kattegat
Germany	-	-	109	-	-	401	-
Denmark	-	-	21	-	-	979	815
Estonia	-	-	9	225	185	-	-
Finland	1,683	1,246	-	315	-	-	-
Lithuania	-	-	703	-	175	-	-
Latvia	-	-	167	-	1,061	-	-
Poland	-	-	4,291	-	-	-	-
Russia	-	-	242	2,909	99	-	-
Sweden	811	1,133	318	-	-	116	753
Belarus	-	-	349	-	407	-	-
Czech Republic	-	-	57	-	-	-	-
Ukraine	-	-	47	-	-	-	-

Nutrient inputs are still higher than Maximum Allowable Inputs HELCOM PLC assessment

Total nitrogen input in Total phosphorus input in TN BAS TP BAS 2020 compared to MAI 2020 compared to MAI 30 000 800 000 ~ 25 000 TN BOP TP BOI 600 000 20 000 60.000 3 000 15 000 400 000 40.000 10 000 ₽ 200 000 5 000 20.000 Bothnian Bay Bothnian Bay TP BOS TN GUF 80.000 TP GUE 3 000 120 000 5,000 > 60.00 \$ 2 000 4 000 80.000 40,000 3 000 - 1 D00 40 000 2 000 Bothnian Sea Bothnian Sea Gulf of Finland **Gulf of Finland** TN GUE TP GUR TN KAT ΤΡ ΚΑΤ 80.00 2.00 ≈ 60 000 Gulf Gulf 1 500 of Riga of Riga 40000 1.000 200 20000 € 20.00r Kattegat Baltic Proper Kattegat Baltic Proper TN BAP TP BAP 400 000 **Danish Straits Danish Straits** 15 000 300 000 TP DS TN DS \$ 10 000 200 000 1.600 ≧ 100 000 5 000 40.000 800 400 Inputs lower than MAI Inputs lower than MAI Inputs higher than MAI nouts higher than MAI 100 km Inputs lower than MAI (not statistically certain) Inputs lower than MAI (not statistically certain)

HELCOM (2023) Inputs of nutrients to the sub-basins (2020). HELCOM core indicator report. https://indicators.helcom.fi/indicator /inputs-of-nutrients/

What about the future?

- Scenarios with present day nutrient inputs (2020)
- 100 simulations with randomized meteorogical forcing

We can expect a gradual improvement with current nutrient inputs

Shaded area represent range of "natural" variability

and several GES thresholds may be reached but only by the end of the century

Simulated eutrophication ratios (ER). ER < 1 = good environmental status target reached

Eut	rophication state indicator	Target value*	Today (2016-2021)	Future 2050	Future 2100
-	Winter DIN	2.64 μM	1.38	1.19	1.20
N	Winter DIP	0.29 μM	2.43	1.51	1.33
Р	Total N	16.25 μM	1.30	1.09	0.99
	Total P	0.44 μM	1.87	1.22	0.99
02	O ₂ debt	8.66 mg l ⁻¹	1.37	1.09	0.99
	Chl-a	1.72 μg l ⁻¹	1.74	0.86	0.63

*HELCOM core indicator reports 2023

Future challenges – climate change

On-going rapid warming

Staplarna i diagrammet visar rekonstruerad årsmedeltemperatur. Röda staplar visar högre och blå visar lägre temperaturer än medelvärdet för hela serien. Den kraftigaste grå linjen visar ett glidande medelvärde beräknat över ungefär 30 år och den tunnare grå linjen visar ett glidande medelvärde beräknat över ungefär 10 år.

Future challenges – climate change On-going rapid warming

Heat content of the Baltic Sea From Baltsem simulation

Future challenges – climate change

On-going rapid warming

Average temperature in the Gulf of Bothnia From Baltsem simulation

Future challenges – climate change

Will lead to major and complex changes in the ecosystem

Amounts of benthic biomass for different levels of nutrient loads From Baltsem simulation (Ehrnsten et al., 2020)

.m ty

Concluding remarks

- Numerical modeling tools are necessary and useful for managing the Baltic Sea
- Still models are limited to relatively simplistic physicalbiogeochemical processes
- Changes due to the ecosystem function from large perturbations by climate change may be drastic and difficult to simulate
- Novel technology can help!

Thanks for support from

Swedish Agency for Marine and Water Management

